EXPLORING CGM / IGM moving away from large surveys

Purvi Udhwani, Aditya Manuwal, Jayadev Pradeep, Sriram Sankar, Pratyush Anshul, Mathin Yadav, Sachin PC, Dheeraj Kumar Khonde

Raghunathan Srianand (IUCAA), Sowgat Muzahid (IUCAA), Vikram Khaire (IIST), Hum Chand (ARIES), Jane Charlton (Penn State), Blair Savage (U of Wisconsin), Bart Wakker (U of Wisconsin)

anand narayanan

100

if baryons accreted onto the halos all become stars

Feedback processes and accretion rearrange baryons

cosmic baryon fraction (19% from CMB)

Vogelsberger et al. (2014)

100

if baryons accreted onto the halos all become stars

Feedback processes and accretion rearrange baryons

cosmic baryon fraction (19% from CMB)

Vogelsberger et al. (2014)

100

if baryons accreted onto the halos all become stars

Feedback processes and accretion rearrange baryons

cosmic baryon fraction (19% from CMB)

Vogelsberger et al. (2014)

M81 Galaxy group

(c) APOD / Jordi Gallego

Chynoweth et al., NRAO/

M81 Galaxy group

(c) APOD / Jordi Gallego

Chynoweth et al., NRAO/AUI/NSF, Digital Sky Survey.

The Role of AGN Feedback

M87 diffuse X-ray (blue) + radio continuum (red)

The Role of AGN Feedback

M87 diffuse X-ray (blue) + radio continuum (red)

The Role of AGN Feedback

C. C. Kirkpatrick, B. R. McNamara, 2015, MNRAS

The Role of AGN Feedback

z=0

Two matched sets of simulations of massive halos ($10^{10} < M^*/M_{solar} < 10^{12}$) with and without AGN feedback

Choi, Ena et al. 2020, ApJ

Feedback from Star Formation

https://www.tng-project.org/media/ IllustrisTNG50

Tumlinson et al. 2011

Feedback from Star Formation & Accretion Azimuthal Angle Dependance

0.0	30 kpc
-1.4 -1.0 -0.5 -0.25	e-or e major axis e-or

Nielsen et al. 2015

Outflows & Accretion Azimuthal Angle Dependance

Azimuthal angle dependence of Mg II

Kacprzak et al. 2012

Outflows & Accretion Azimuthal Angle Dependance

Azimuthal angle dependence of Mg II

Kacprzak et al. 2012

Azimuthal angle dependence of O VI

Kacprzak et al. 2015

Tumlinson et al. 2011

Tumlinson et al. 2011

Choi, Ena et al. 2020, ApJ

AGN radiation impacts the CGM anisotropically — > asymmetry in metal ion absorption ? Spatial sampling at high spectral resolutions as it has been done for some normal galaxy CGMs

AGN radiation impacts the CGM anisotropically — > asymmetry in metal ion absorption? Spatial sampling at high spectral resolutions as it has been done for some normal galaxy CGMs

For galaxies of similar mass, to what extent does AGN lower the fraction of halo gas that is cooling? (covering fraction of HI, cool metals - in CGM of galaxies with and without AGN)

AGN radiation impacts the CGM anisotropically — > asymmetry in metal ion absorption? Spatial sampling at high spectral resolutions as it has been done for some normal galaxy CGMs

For galaxies of similar mass, to what extent does AGN lower the fraction of halo gas that is cooling? (covering fraction of HI, cool metals - in CGM of galaxies with and without AGN)

Do all AGN host galaxy CGM have enhanced metal abundances and higher covering fraction of OVI?

AGN activity picks up -> outflows and jets push CGM gas away -> strong AGN feedback quenches SF –> lowers the covering fraction of OVI in the CGM.

enhanced covering fraction of metals around AGNs a temporary phenomenon? (simulations and observations)

PAIR QUASAR SIGHTLINES PROBING **MULTIPHASE GAS ASSOCIATED WITH CGM AND GALAXY GROUP ENVIRONMENT**

12 galaxies within ± 250 km/s and 2 Mpc of projected distance from the sightlines of which five are within 500 kpc. Stellar masses range from M * ~ 10^{8.7} - 10^{11.5} Msun

Galaxies in the Group Environment

					ρ (M	[pc)	Δv (k	$m s^{-1}$)							
Label	RA (deg)	Dec. (deg)	m_R	z _{gal}	Α	в	Α	в	M_R	log(L/L*)	$\log(M_*/M_{\odot})$	R _{vir} (kpc)	ρ_A/R_{vir}	ρ_B/R_{vir}	log(M _h /M
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
G1	17.56048	-2.32871	25.1	0.39954	0.121	0.318	-12	-83	-16.5	-2.6	8.7	87.9	1.3	3.5	11.0
G2	17.56194	-2.32547	22.0	0.39935	0.179	0.249	28	-42	-19.6	-1.4	10.0	143.2	1.2	1.7	11.6
G3	17.56718	-2.32438	21.3	0.398 82	0.276	0.200	142	71	-20.3	-1.1	10.6	257.2	1.0	0.7	12,4
G4	17.51073	-2.34742	21.3	0.399 92	0.915	1.288	-92	-163	-20.3	-1.1	9.9	136.3	6.6	9.3	11.6
G5	17.537 55	-2.38853	21.3	0.398 82	1.164	1.566	143	73	-20.3	-1.1	10.4	193.2	5.9	8.0	12.0
G6	17.52869	-2.38692	20.8	0.39930	1.197	1.611	40	-31	-20.8	-0.9	10.6	232.2	5.0	6.8	12.3
G7	17.56568	-2.27001	20.1	0.400 54	1.214	0.861	-226	-296	-21.5	-0.6	11.0	428.5	2.8	1.9	13.1
G8	17.602.23	-2.37862	19.8	0.400 53	1.305	1.425	-223	-294	-21.9	-0.4	11.2	834.3	1.5	1.6	13.9
G9	17.58691	-2.40884	19.7	0.39912	1.635	1.884	79	8	-21.9	-0.4	11.4	1357.3	1.1	1.3	14.6
G10	17.631 62	-2.36604	21.6	0.399 22	1.643	1.604	57	-13	-20.0	-1.2	10.7	279.9	5.8	5.6	12.5
G11	17.58439	-2.41457	21.4	0.399 93	1.722	1.985	-96	-167	-20.2	-1.1	9.9	138.1	12.3	14.2	11.6
G12	17.48010	-2.26885	23.9	0.399 50	1.900	1.924	$^{-4}$	-74	-17.7	-2.1	10.1	160.2	11.7	11.8	11.8
G13	17.51376	-2.20793	22.3	0.39978	2.536	2.323	-63	-134	-19.3	-1.5	8.6	86.5	29.0	26.5	11.0
G14	17.425 89	-2.35586	20.3	0.39945	2.559	2.884	7	-64	-21.3	-0.7	11.1	602.1	4.2	4.7	13.5
G15	17.62484	-2.44852	22.1	0.40178	2.661	2.847	-491	-562	-19.5	-1.4	9.6	120.1	21.9	23.4	11.4
G16	17.734 52	-2.20009	21.7	0.401 80	4.339	3.939	-496	-567	-20.0	-1.2	9.2	102.5	41.8	38.0	11.2

Data from VLT/VIMOS, Keck/DEIMOS, and Gemini/GMOS and Tejos et al. (2014)

stellar masses from M*/L ratio as a function of color tables halo masses estimated using the stellar-to-halo-mass relation SFR using H-alpha or [O II]

gas detected at z ~ 0.4 along sightline B is a partial Lyman limit system

multiple photoionised gas phases with metallicities of 1/10 solar

O VI tracing collisionally ionized gas of higher temperature

absorber along the projected major axis of the nearest galaxy (G3)

 $\Phi \approx 3^{\circ}$, $d/R_{vir} \approx 0.7$, SFR < 0.1 M_o yr⁻¹

er

gas detected at z ~ 0.4 along sightline B is a partial Lyman limit system

multiple photoionised gas phases with metallicities of 1/10 solar

O VI tracing collisionally ionized gas of higher temperature

absorber along the projected major axis of the nearest galaxy (G3)

 $\Phi \approx 3^{\circ}$, $d/R_{vir} \approx 0.7$, SFR < 0.1 M_{\odot} yr⁻¹

cold accretion stream from the group environment?

Group environments have plenty of cool gas away from galaxies mixed with metals from past outflows and tidal streams. Accreting gas need not be pristine.

gas detected at z ~ 0.4 along sightline B is a partial Lyman limit system

multiple photoionised gas phases with metallicities of 1/10 solar

O VI tracing collisionally ionized gas of higher temperature

absorber along the projected major axis of the nearest galaxy (G3)

 $\Phi \approx 3^{\circ}$, $d/R_{vir} \approx 0.7$, SFR < 0.1 M_{\odot} yr⁻¹

cold accretion stream from the group environment?

Group environments have plenty of cool gas away from galaxies mixed with metals from past outflows and tidal streams. Accreting gas need not be pristine.

gas detected at z ~ 0.4 along sightline A has a lower column density in cold gas O VI and HI line broadening suggests $T \gtrsim 10^5$ K absorption from both photoionised and collisionally ionised phases of gas metal abundances of solar absorber along the projected minor axis of G2 $\Phi \approx 86^{\circ}$, $d/R_{vir} \approx 1.1$, SFR $\approx 3 M_{\odot} \text{ yr}^{-1}$

gas detected at z ~ 0.4 along sightline A has a lower column density in cold gas O VI and HI line broadening suggests $T \gtrsim 10^5$ K absorption from both photoionised and collisionally ionised phases of gas metal abundances of solar absorber along the projected minor axis of G2 $\Phi \approx 86^{\circ}$, $d/R_{vir} \approx 1.1$, SFR $\approx 3 \text{ M}_{\odot} \text{ yr}^{-1}$ tracing earlier metal-rich outflows from G2?

gas detected at z ~ 0.4 along sightline A has a lower column density in cold gas O VI and HI line broadening suggests $T \gtrsim 10^5$ K absorption from both photoionised and collisionally ionised phases of gas metal abundances of solar absorber along the projected minor axis of G2 $\Phi \approx 86^{\circ}$, $d/R_{vir} \approx 1.1$, SFR $\approx 3 \text{ M}_{\odot} \text{ yr}^{-1}$ tracing earlier metal-rich outflows from G2?

Right Ascension (deg)

Lyman Limit System - BLA - OVI Tracing (Possible) Gas Accretion onto CGM

Khonde et al. 2024, submitted

Lyman limit component + low ionization metals trace gas with T ~ 10⁴ K

Lyman limit component + low ionization metals trace gas with T $\sim 10^4$ K O VI + BLA traces gas with T ~ 10⁶ K

The baryonic column density in the cold and hot phases are comparable $N(H) = N(H I) + N(H II) \sim 10^{20} \text{ cm}^{-2}$

H-alpha narrow band image at z ~0.4

Khonde et al. 2024, submitted

G0 : $\rho = 12 \text{ kpc}, |\Delta v| = 54 \text{ km/s}$

G1 : $\rho = 104$ kpc, $|\Delta v| = 127$ km/s

Parameter	G0	G1
Z	0.39022	0.389
$M_* (M_{\odot})$	$\approx 10^{6}$	≈ 10
SFR (M _☉ yr ⁻¹)	0.01	1.78
R _{vir} (kpc)	31.53	138.9
[O/H]	-0.058	0.21

G0 is probably a dwarf satellite of G1

$$\rho/R_{vir} \approx 0.7$$

The [O/H] for the galaxies is much higher than the metallicity inferred from ionization models for the cold and warm gas phases

Accreting streams from the cosmic web (blue) typically starts corotating with the disk in the final stages of its accretion.

Accreting streams from the cosmic web (blue) typically starts corotating with the disk in the final stages of its accretion. Here it is counter rotating

n	it	te	2	d

-	-	-	-	-
			1	J
				1
				1
				4
				4
				4
				1
]
				1
		_	_	1
				1
				┥
				4
				ł
]
]
				1
				٦
				١
				ł
				4
				4
				1
]
_		-	-	1
			7	1
l)(3	31		1
	_			ł
L	0		ł	┥
				4
Q				1
				J
Ľ	9	3]
			÷	1
_	-	-	-	-

The metallicity 1/10th solar for the LLS compares well with median metallicity of such absorbers in simulations where they trace past outflows or tidally stripped material

LLS tracing high velocity gas O VI transition temperature gas

Ultra-Strong Mg II at $z \sim 1.13$ tracing gas accretion from the CGM?

Udhwani et al. in prep

Ultra-Strong Mg II at $z \sim 1.13$ tracing gas accretion from the CGM?

Udhwani et al. in prep

no bright companion to the GOTOQ within 500 kpc

Ultra-Strong Mg II at $z \sim 1.13$ tracing gas accretion from the CGM?

The absorber is nearly co-planar with the projected major axis of the galaxy

Udhwani et al. in prep

Ultra-Strong Mg II at z ~1.13 tracing gas accretion from the CGM?

Udhwani et al. in prep

Ultra-Strong Mg II at z \sim 1.13 tracing gas accretion from the CGM?

Even very large disk thickness of 100 kpc does not reproduce the full velocity range of absorption Extraplanar gas with random velocities have to be contributing to the absorption Possibly metal enriched CGM getting accreted : co-rotating + infalling

Udhwani et al. in prep

	9	р —
	-	
6		
		_
~		
2		
	_	_
		_
4	~	
1		
•••	•••	-
		-
		-
) ()	

Metals in Circum-Cluster Medium at z ~ 0.4

Cluster	Zcl	M500	r500	QSO	zqso	ρ_{cl}/r_{500}	Zabs
		(10 ¹⁴ M _☉)	Mpc		Mpc		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
J0041-5107	0.45 ± 0.04	3.04 ± 0.87	0.87	J0040-5057	0.608	4.4	0.43737
J2016-4517	0.45 ± 0.03	3.19 ± 0.89	0.89	J2017-4516	0.692	4.7	0.43968
J2109-5040	0.47 ± 0.04	3.81 ± 0.87	0.93	J2109-5042	1.262	1.6	0.51484

redshifts (8) are from Muzahid et al. (2018).

Table 1. Information about the QSO-cluster pairs. Cluster names (1), photometric redshifts (2), and masses (3) are from Bleem et al. (2015). QSO names (5) and redshifts (6) are from Monroe et al. (2016). The r₅₀₀ values (4), normalized clustocentric impact parameters of the QSO sightlines (7) and absorber

Muzahid et al. 2017 Pradeep et al. 2019

Muzahid et al. 2017

QSO	Zabs	log N(HI)	nH	log N _H	p/k	Т	L	[C.
			(cm ⁻³)		(K cm ⁻³)	(K)	(kpc)	
UVQS J0040-5057	0.43737	18.63 ± 0.07	$\gtrsim 5 \times 10^{-4}$	$\lesssim 20.9$	$\gtrsim 8.6$	$\lesssim 1.7 imes 10^4$	$\lesssim 492.8$	≥ -
UVQS J2017-4516	0.43968	16.55 ± 0.02	$\sim 3 \times 10^{-3}$	~ 18.8	~ 43.7	$\sim 1.5 \times 10^4$	~ 0.9	-0.35
UVQS J2109-5042	0.51484	16.72 ± 0.05	$\sim (0.9 - 3.9) \times 10^{-3}$	~ [19.0, 19.7]	~ [18.0, 60.9]	$\sim 1.7 \times 10^4$	~ [0.9,18.4]	[-1.0

High HI column densities in clusters

Pradeep et al. 2019

100 times more baryons

ICM enriched by feedback from star formation, AGN activity and/or ram pressure or tidal stripping

Slow build up of metals

Kobulnicky & Kewley 2004

Tanvir et al. 2021

z

Mass density of baryons in metals in the CGM / IGM environment show a gradual increase in the last 12 Gyrs

Feedback from SNe and AGN

